

Intelligent Hearing Aid Project

Beckman Institute University of Illinois at Urbana-Champaign

Douglas Jones

Collaborators: C. Liu, A. Feng, B. Wheeler, W. O'Brien, C. Lansing, R. Bilger

He killed the dragon with his sword

Goal:

Develop high performance auditory processors which can effectively extract a desired speech signal in the presence of multiple competing sounds.

Algorithm 1: Localization and Cancellation

Beckman Institute
University of Illinois at Urbana-Champaign
Douglas Jones, August 1999

Algorithm 1: Localization and Cancellation

Localization in the Brain

Localization by Computer (measure of coincidence vs. azimuth)

Algorithm 2: Minimum Variance Cancellation

Beckman Institute University of Illinois at Urbana-Champaign Douglas Jones, August 1999

Experimental Examples

@ 65°

Interferor

Target

@ 0°

Stir your coffee with a spoon. Stir your

Twelve talker babble

Interferor @ 30°

His plan meant taking a big risk. His pl

Combined Waveform

Interferor @ 22°

Combined Waveform

Reconstructed Waveform

Reconstructed Waveform

Beckman Institute University of Illinois at Urbana-Champaign Douglas Jones, August 1999

Experimental Summary

(ALGORITHM 2)

Expmt #	Position	Position	Position	Position	Average
	Attenuation	Attenuation	Attenuation	Attenuation	Gain
1	-75°	Target: 0°	20°	75°	
	4.8 dB	0.6 dB	4.1 dB	2.1 dB	6.2 dB
2	30°	-45°	60°	Target: -10°	
	6.3 dB	4.2 dB	3.1 dB	0.6 dB	6.7 dB
3	Target: 10°	-80°	-50°	45°	
	1.1 dB	3.9 dB	2.9 dB	2.7 dB	4.6 dB
4	-30°	15°	Target: 5°	-60°	
	6.3 dB	0.9 dB	0.9 dB	3.6 dB	5.3 dB
5	-25°	Target: 25°	-70°	80°	
	5.7 dB	0.7 dB	4.3 dB	2.9 dB	6.3 dB

Recordings made in a Conference Room

Current and Future Work

- Real-Time Implementation
- Microphone Compensation
- Dereverberation

Thanks to Dr. Chen Liu (now at Motorola), Dr. Marc Goeygou (now at U. Lisle) and grad students Mike Lockwood and Mark Elledge

